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Abstract
The overall interaction atmosphere is often a result of com-

plex interplay between individual interlocutor’s behavior ex-
pressions and joint manifestation of dyadic interaction dynam-
ics. There is very limited work, if any, that has computation-
ally analyzed a human interaction at the dyad-level. Hence, in
this work, we propose to compute an extensive novel set of fea-
tures representing multi-faceted aspects of a dyadic interaction.
These features are grouped into two broad categories: expres-
sive and structural behavior dynamics, where each captures in-
formation about within-speaker behavior manifestation, inter-
speaker behavior dynamics, durational and transitional statis-
tics providing holistic behavior quantifications at the dyad-level.
We carry out an experiment of recognizing targeted affective at-
mosphere using the proposed expressive and structural behav-
ior dynamics features derived from audio and video modalities.
Our experiment shows that the inclusion of both expressive and
structural behavior dynamics is essential in achieving promis-
ing recognition accuracies across six different classes (72.5%),
where structural-based features improve the recognition rates
on classes of sad and surprise. Further analyses reveal impor-
tant aspects of multimodal behavior dynamics within dyadic in-
teractions that are related to the affective atmospheric scene.
Index Terms: affect recognition, face-to-face interaction, mul-
timodal behaviors, dyad-level affect

1. Introduction
Human face-to-face interactions, by nature, involve multiple (≥
2) interacting participants engaged in conversations to exchange
information, communicate ideas, express emotional feelings,
etc. The individual behavior expressions interweaving with the
inter-participants dynamics often shape the overall perceived
tone and/or the style of a given interaction. For example, Sy
et al. demonstrated that the behaviors exhibited by the group
leader have a strong impact on the perception of the group atmo-
sphere and affect the group performance [1]; Fay et al. showed
that the difference in the exchanges of speech patterns around
the topic-of-interest within a group discussion is essential in cat-
egorizing the interaction as a dialog or a monologue [2].

In terms of group emotion dynamics studies, Barsade et
al. proposed a conceptual framework of emotion influence as
a “top-down” and a “bottom-up” flow within a group [3].
This framework states that the individual-level emotion and
the group-level emotion affect each other; the “bottom-up” as-
pect focuses on how individual-level emotion shape the group-
level emotion, where “top-down” aspect shows vice versa. This
framework was elaborated further by Kelly et al. [4]. In this
work, our goal is to operationalize a computational framework
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in representing both interlocutors behaviors and their dynamics
in a dyadic setting, and we apply it for automated analysis of
the targeted affective atmosphere of dyadic interactions.

While there has been a tremendous technical progress in
the emotion recognition technology, most of the works have fo-
cused mainly on obtaining robust emotion recognition at an in-
dividual-level by modeling each person’s behaviors (e.g., facial
expressions [5], speech [6], and multimodal behaviors [7, 8, 9])
or by leveraging dyad’s information [10, 11, 12]. Only recently
in CVPR2016, Mou et. al. have proposed the use of facial ex-
pressions of participants to automatically detect emotion at the
group level [13]. There is, however, still very limited research
on developing computational approaches in quantifying mul-
timodal expressions and dialogue structures in the automatic
recognition of affective atmosphere at the group (dyadic) level.

In this work, we propose to derive an extensive set of fea-
tures from both interlocutors to describe multi-faceted charac-
teristics of an interaction at the dyad-level. The approach is
done by first assigning each audio and video frame into one of
the three basic states. For speech, the three states are defined
to characterize the floor holding situation: 1) silence (s1sp), 2)
secondary speaker (s2sp), and 3) primary speaker (s3sp) .For
video, the three states are defined to characterize the visual
attention on movement: 1) stationary (s1bm), 2) one-person
movement (s2bm), and 3) simultaneous movement (s3bm). We
then compute two attributes, expressive and structural dynam-
ics, with respect to each state for each modality to compose our
final feature set. Expressive dynamics are the features repre-
senting vocal characteristics and body movements using low-
level descriptors on segments of states with activities (s2sp, s3sp,
s2bm, s3bm) - quantifying interactive behavior at the micro-scale.
Structural dynamics involve computing features on durational
and transitional statistics of the state’s evolution of an interac-
tion - measuring behavior interaction at the macro-scale.

This framework of deriving behavior features can capture
individual speaker’s behavior manifestation, inter-speaker be-
havior dynamics, and interaction flow within a dyadic interac-
tion; the formulation further provides a natural interpretability.
We apply the framework in task of recognizing the dyad-level
affective atmosphere in the NTUA database, i.e., a multimodal
dyadic emotional database. There are a total of six classes of af-
fective atmosphere, and we obtain the best accuracies of 72.5%
with a combination of features from expressive and structural
dynamics using both audio and video modalities. Our analysis
shows that without using structural-based features, the recog-
nition rate obtained is only 65.6%. These macro-level features
provide improvement on classes such as sad and surprise. Fur-
ther analysis reveal that the secondary speaker’s speech cues
provide more information on the affective atmosphere com-
pared to the primary speaker; also, the expression in views
of “one-speaker movement” alone can achieve an accuracy of
62.6%. The rest of paper is as follows: section 2 describes
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database and framework, section 3 details experimental setup
and results, and section 4 is the conclusion.

2. Research Methodology
2.1. The NTUA Emotion Database

The NTUA Emotion database is a newly-collected Chinese cor-
pus. It is a collaborative work with 44 participants (24 females,
20 males) from the department of drama of the National Tai-
wan University of Arts, Taiwan. A pair of actors formed a dyad
team to perform a 3-minute long face-to-face interactions. The
interactions include improvised real-life scenarios without pre-
defined scripts to ensure natural behavior manifestations. In to-
tal, we have recorded about 11-hour data, which includes 210
sessions, of both audio and video data. In each session, both
actors’ voice are captured by using Bluetooth wireless closed-
up microphones. The movement of actors is capture by SONY
high definition video camera. All of the sessions are directed by
two professional directors (also hold appointments as professors
at the department). The director plays a significant role in steer-
ing the overall targeted interaction atmosphere during the col-
lection. The database is designed to target six major categories
of affective atmospheres at the dyad-level: angry, frustrated,
happy, neutral, sad, and surprise.

In this work, we focus on predicting these dyad-level af-
fective attributes, i.e., the targeted affective atmosphere as our
prediction label. The reliability of these targeted dyad-level af-
fective attributes are further assessed by having 42 annotators
to rate each interaction to be one of the six categories. Table 1
shows percentages of the perceived ratings (determined through
majority vote of the 42 annotators) that result in the same at-
tributes as the targeted affective atmospheres; all six emotion
categories achieve over 90%. The total number of samples are
210 with the split between the six classes shown in Table 1.

2.2. Multimodal Structural and Expressive Features
Figure 2 shows a schematic of our complete multimodal struc-
tural and expressive features used in the detection of dyad-level
affective attributes. The framework involves two steps: 1) pre-
processing to assign each audio and video frame as one of the
three distinct states, and 2) computing structural and expres-
sive features intended to capture aspects on individual speaker’s
behavior manifestation, inter-speaker behavior dynamics, inter-
action states’ durational and transitional statistics.

2.2.1. Pre-processing of Audio and Video
Within each dyadic interaction, we can conceptualize the dy-
namics of behavior flow as a state-changing evolution. As a
first step, we categorize each session into three pre-defined parts
with respect to audio and video separately. For the audio, we
separate frames of audio into three distinct states: 1) silence
(s1sp), 2) secondary speaker speaking (s2sp), and 3) primary

Table 1: It shows the percentages of the perceived ratings (de-
termined through majority vote of the 42 annotators) that result
in the same attributes as the target affective atmospheres

Dyad-level Affect Targeted Perceived Percentage (%)
angry 32 32 100%
frustration 36 38 94%
happy 30 32 93%
neutral 40 36 90%
sad 40 40 100%
surprise 32 32 100%

speaker speaking (s3sp), where the primary speaker is defined
as the interlocutor that takes up the largest portion of speak-
ing floor in a given interaction. This description of audio states
(10ms frame-rate) can be thought of as a basic primitive roughly
in characterizing the floor-taking within a dyadic interactions.

The analogous splitting in the video data, i.e., body move-
ment of the dyad, is conceptually similar though the floor-taking
phenomena happened in the speech modality do not occur in
the video modality. Here, we categorize the three types (states)
of movements in the viewing screen: 1) stationary (s1bm), 2)
one-person movement (s2bm), and 3) simultaneous movement
(s3bm). An example of each of these three states is shown in
Figure 1. We derive this categorization to provide the basic unit
(30 Hz frame-rate) in characterizing the visual attention of the
viewing screen, e.g., no one is moving on the screen, one-person
moving in a dyad scene, and two-people moving together. How-
ever, unlike the splitting of audio states can be easily done with
the speaking duration of each speaker, we have to develop the
following automatic video pre-processing procedure:

1. Extracting dense trajectories:
We utilize dense trajectory extraction method [14] to
compute positions of interests, that is, the (x, y) posi-
tions of candidate movements in the video

2. Cropping and denoising:
We consider movement only within the marked space be-
tween the two lines shown in Figure 1 and removing spu-
rious trajectories using morphology-based methods [15]

3. Categorizing states
In order to assign a frame into one of the two movement
states (s2bm, s3bm), we perform k-means (k = 2) cluster-
ing on the positions of leftover trajectories to obtain the
two centroids within each frame. If the distance between
the two centroid’s x-coordinate are large, we mark it as
s3bm, otherwise as s2bm. This corresponds to the fact that
the actors mainly move horizontally on stage. If there is
no trajectories left, the frame is categorized as s1bm.

4. Generating bounding boxes
After states categorization, we further put a bounding
box around all moving trajectories to enable further fea-
ture computation. S2bm will output one bounding box,
and s3bm will output two bounding boxes

2.2.2. Structural Dynamics
Structural dynamics features are used to represent the macro-
evolution of basic audio and video states progression through-
out an interaction. In our work, we define two broad types of
structural features: statistics and transitions. In terms of statis-
tics, we compute the normalized sum, average, and standard
deviation. Sum is computed as the total number of frames occu-
pied by a particular state divided by the total number of frames
per session. Average is computed by averaging the time dura-
tion over homogeneous segments of a particular state within a
session. Standard deviation is a computation of standard devi-
ation on the time duration over these homogeneous segments.
These statistics-based computation result in a total of nine fea-
tures for each modality. In terms of transitions, there are six
different states transition possible for each modality. We extract
the transition features by computing the state transition proba-
bility within a session. In total, transition-based features result
in a total of six dimensions for each modality.

In summary, statistics-based features attempt to capture the
overall characteristics of the state occupation both in absolute
terms and in terms of consecutive time-duration (e.g., how long
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Figure 1: An example of three different states in video modality. Yellow circles are the dense trajectories extracted. The two blue line
roughly limits possible movements on stage. Red rectangles and pink rectangles appear at the position where actors have the movement

Figure 2: A schematic of our complete multimodal structural and expressive features. The framework involves two steps: 1) pre-
processing to assign each audio and video frame as one of the three distinct states, and 2) computing structural and expressive features
to capture aspects on individual speaker’s behavioral manifestation, inter-speaker behavioral dynamics, durational and transitional
statistics. The final recognition is done via decision-level fusion between the two modalities.

do the overall stationary scenes occupy, how long does the pri-
mary speaker speak overall, etc), and transition-based features
capture the changing dynamics of these states for each modality
over a session (e.g., how rapid does turn taking occur between
the two speakers, how rapid is the shift in visual attention on
movements, etc).

2.2.3. Expressive Dynamics
We compute expressive dynamics features to represent the be-
havior characteristics of each state at the interaction-level for
audio and video modality. The expressive features can only be
computed for states with activities, i.e., s2sp, s3sp, s2bm, s3bm.
In the video modality, expressive features are computed from
employing Gaussian Mixutre Model (GMM) Fisher-vector en-
coding (FV) [16] on motion boundary histogram (MBH); MBH
are video descriptors for action characterization that is derived
from the tracked trajectories [14]. In the audio modality, we
extract a high-dimensional vector to represent the acoustic pro-
file of each actor in the session. We first extract 39 low-level
acoustic descriptors, i.e., 13 MFCCs and their delta and delta-
deltas. We then perform FV encoding on MFCCs after perform-
ing speaker-wise z-normalization to obtain interaction level rep-
resentation. We compute these representations for each of the
two states with activities for each behavior modality.

3. Experimental Setup and Results
We conduct dyad-level affective atmosphere recognition tasks
in the NTUA database using our proposed multimodal expres-
sive and structural behavior features (section 2.2). The choice
of classifier is support vector machine with linear kernel (C =
1). The evaluation scheme is done via leave-one-interaction-out
cross validation. The performance metric used is unweighted
average recall (UAR). The fusions between speech- and video-
based expressive and structural features are carried out in a two-
stage process, where the decision scores of each type of features

are concatenated and then fed into the second-level classifier.
The training of the second-level classifier is done completely
using the training set only.

3.1. Experimental Results and Analyses
3.1.1. Expressive-only and Structural-only Dynamics
Table 2 summarizes the recognition results using expressive-
only dynamics features and structural-only dynamics features
in speech-only, video-only, and multimodality fusion.

Performing dyad-level attribute recognition based on ex-
pressive features can be thought of as the most intuitive go-
to method, i.e., extracting behavior representations of each
speaker within the interaction as feature inputs to the classifier.
In fact, the method proposed in [13] is largely based on this
concept. The best recognition rate using multimodal expressive
features is 65.6%, i.e., achieved by fusing secondary speaker’s
acoustic information with the movement characteristics exhib-
ited in the duration of time when only one of the dyad is mov-
ing. This fusion of multimodal expressive behaviors improves
14.9% and 3% absolute over the best accuracies achieved in
speech (50.7%) and video modality (62.6%). Video-based ex-
pressive features outperform audio-based expressive features.
The body movement features are better overall with recognition
rate higher in attribute of frustration, where audio features are
better for different attributes, i.e., happy and neutral.

There are two interesting observations that we see from Ta-
ble 2. The first one is that the information possessed by the sec-
ondary speaker is more than the primary speaker in terms of rec-
ognizing the dyad-level affective attributes (50.7% vs. 43.2%).
This provides an intriguing result indicating that it may not be
the person who talks the most during a dyadic interaction that
would shape the affective interaction as a whole the most. Sec-
ondly, the state of “one-speaker movement” gives the higher
recognition rate in the video modality compared to “simulta-
neous movements” (62.6% vs. 31.7%). The time portion of the
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Table 2: A summary of affective atmosphere recognition results using multimodal expressive or structural dynamics-only features. The
accuracy measure is unweighted average recall, and the per-class recall rate is shown below

Type Expressive Dynamics Structural Dynamics
Modality Speech Video Speech + Video Speech Video Speech + Video

States Primary Secondary One Simultaneous Secondary+ One Statistics Transitions Statistics Transitions All
mean-UAR 43.2 50.7 62.6 31.7 65.6 20.5 14.9 18 14.9 29.0

angry 13.3 33.3 60.0 20.0 40.0 20.5 0.0 0.0 0.0 26.7
frustration 53.6 63.2 79.0 36.8 73.7 21.1 89.5 84.2 89.5 21.1

happy 40.0 73.3 60.0 20.0 86.7 40.0 0.0 0.0 0.0 46.7
neutral 70.6 76.5 41.2 32.3 52.9 0.0 0.0 23.5 0.0 17.7

sad 38.9 38.9 66.7 27.8 77.8 88.9 0.0 0.0 0.0 55.6
surprise 43.8 18.8 68.8 50.0 62.5 0.0 0.0 0.0 0.0 6.25

Table 3: A summary result on fusion of expressive dynamics
and structural dynamics. The accuracy is presented as (best
expressive-features / expressive + structural features)

Type Expressive + Structural Dynamics
Modality Speech Video Speech + Video

Feature

Secondary(S) One(V) Secondary(S)
+Transitions(S) +Statistics(V) +One(V)

+Transitions(V) +Statistics(V)
+Transitions(V)

mean-UAR 50.7 / 54.7 62.6 / 65.6 65.6 / 72.5
angry 33.3 / 40.0 60.0 / 60.0 40.0 / 40.0

frustration 63.2 / 68.4 79.0 / 79.0 73.7 / 79.0
happy 73.3 / 80.0 60.0 /66.7 86.7 / 86.7
neutral 76.5 / 52.9 41.2 / 41.2 52.9 / 76.5

sad 38.9 / 55.6 66.7 / 77.8 77.8 / 77.8
surprise 18.8 / 31.3 68.8 / 68.8 62.5 / 75.0

“one-speaker movement” is about twice the total duration of “si-
multaneous movement”. The characteristics in the manifested
body movement when only one of the dyad is moving possess
the most significant amount of affective information toward the
interaction. The relatively low accuracies achieved when us-
ing “simultaneous movement” features in the video modality
may point to the fact that those movements are associated pos-
sibly more with the logistics, e.g., walking around the stage or
simply changing positions, in carrying out an act and less on
expressions of emotion.

Finally, our results indicate that the structural-based fea-
tures, i.e., characterizing the macro-structure of interaction flow
in audio and video modality, do not possess adequate discrim-
inability in identifying the six dyad-level affect attributes by
themselves; however, we will demonstrate their complementary
nature to the expressive features in section 3.1.2.

3.1.2. Fusion of Expressive and Structural Dynamics

Table 3 shows a summary results in fusing expressive and struc-
ture dynamics features in speech, video, and multimodality, re-
spectively. In each of the column, we present a comparison to
the best accuracies obtained using expressive features in each
behavior modality separately. In short, by fusing structural-
based features, it improves the overall UAR across all three
modalities (speech: 4% absolute, video: 3% absolute, and
speech + video: 6.9%). The best accuracy achieved after fusing
expressive and structure is 72.5%.

The improvement by integrating structural features comes
mainly from a higher recognition rate achieved for the class of
sad in speech-only and video-only modality. This result seems
intuitive as the flow of the actors’ dialogue in terms of gener-
ating an overall sad tone is likely to be different from all the

other five emotion classes. In the “speech + video” modal-
ity, the improvement of structural features comes mainly in the
surprise and neural. The improvement in surprise may have
originated in the benefit of structural features in the speech
modality. It is also foreseeable that in order to create an over-
all tone of surprise, there needs to be a distinctive back-and-
forth macro-interaction turn-taking patterns existed between the
dyad. In summary, we obtain a promising accuracy of 72.5% by
fusing secondary speaker’s acoustic information, one-speaker
movements characteristics, and macro-structural information of
video states in a six-class affective atmosphere recognition task.

4. Conclusions
In this work, we present a novel framework in deriving an exten-
sive set of features, termed as expressive and structural dynam-
ics, automatically computed from both interlocutors to mea-
sure their multimodal behavior manifestations and interactive
dynamics in a task of six-class dyad-level affect recognition.
The inclusion of structural features along with multimodality
is essential in obtaining the final promising accuracy of 72.5%.
Since the suite of features are naturally-interpretable, we fur-
ther identify several interesting observations in terms of under-
standing the specific aspects of interaction that would shape the
overall tone of the scene. For example, the secondary speaker
and the single-speaker movement hold the most information in
terms of the dyad-level affective attributes. Furthermore, struc-
tural features are useful in terms of characterizing certain types
of dyad-level affective attributes, i.e., sad and surprise. Many
of these analyses help provide quantitative evidence in under-
standing interlocutors’ behaviors during face-to-face interaction
at the dyad-level.

There are multiple future directions. One of the immedi-
ate work is to apply and adopt the framework toward quanti-
tative analysis of dyadic interactions occurred within other do-
mains, e.g., autism spectrum disorder, where not only the be-
havior manifestation but also the overall atypical interaction dy-
namics play an important role in the current clinical assessment
protocol. Furthermore, there is a very limited availability on
the publicly-available multimodal databases collected with rig-
orous design and annotation of group- (dyad) level affect. We
will explore the opportunity to engage in inter-disciplinary col-
laborative research [17, 18] with domain experts, such as group
scholars or organizational psychologists, to advance our tech-
nical framework in measuring human behaviors at multiple ab-
straction level (individual, dyad, group, etc). At the same time
we hope to bring additional novel insights about social and com-
municative behaviors as human engage in group (dyad) interac-
tions using computational methods.
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